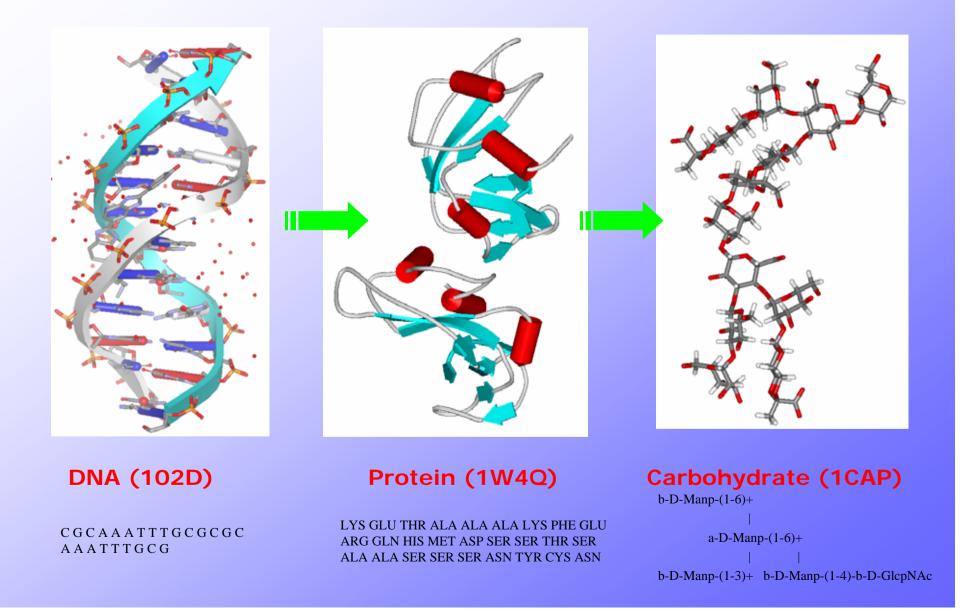
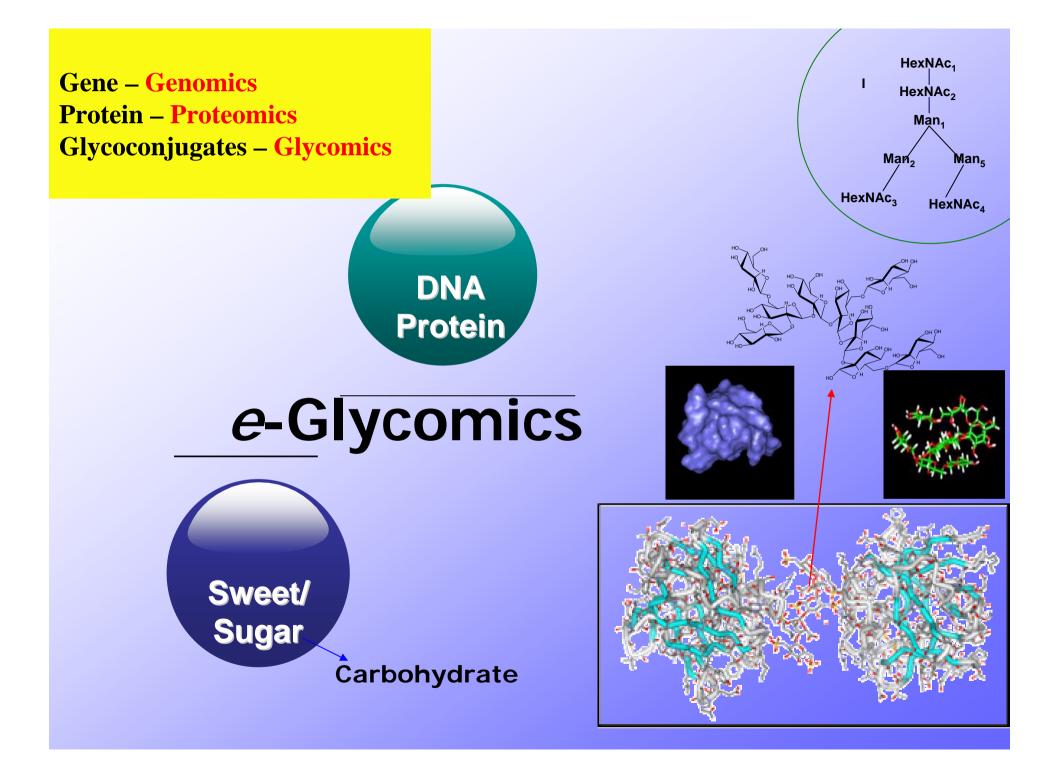
Glyco - MGrid


CyberInfraStructure for *e*-Glycomics



Biomacromolecules & Carbohydrates - Structural Motif

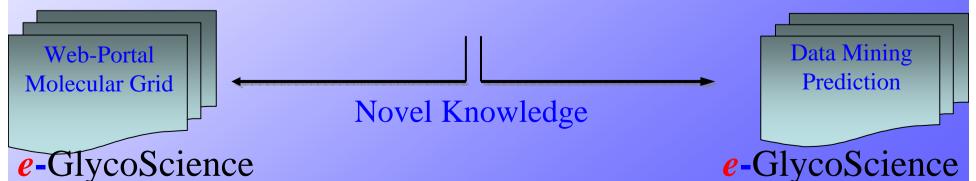
Emerging Technologies

Grid computing

Grid protocols link everything else databases, simulation tools, and underutilized computing power. Computer grids function analogously to the electric grid. Widely dispersed on-line resources become available to focus on the problem at hand.

Glycomics

Glycomics is the effort to understand and harness sugars that are naturally made by the human body, in order to improve health by bolstering the immune system or by arresting disease processes. Sounds easy, but there is, as of yet, no code that determines the structure of the sugars.



CharmmGrid, AmberGrid, MGRID GaussianGrid GamessGrid

Molecular Simulations, Informatics, Theory & Analysis

Structure, DataBase, Informatics, Simulations

e-Glycomics & Glyco-MGrid

Databases for Carbohydrates and Glyco-compounds in WWW

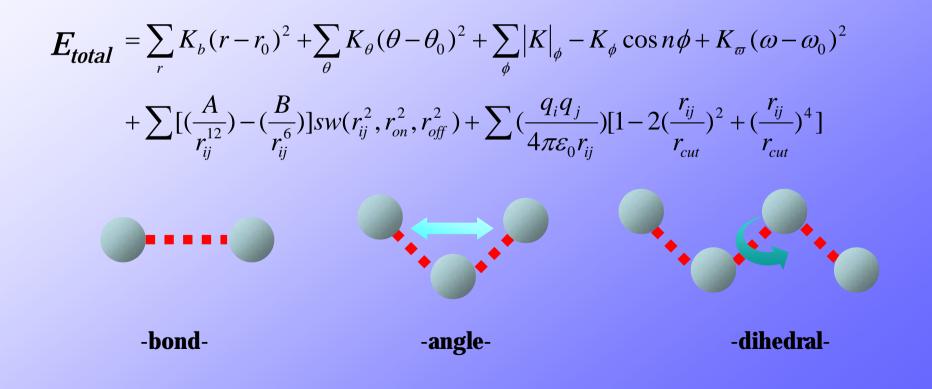
	DataBases			Simulations				
DataBase	1D Sequence	3D structure	User- Interface	Conformation Computing	Solvent Effect	Carbo- Parameter	Grid System	Sharing System
CarbBank	0	×	0	×	×	×	×	×
SUGABASE	0	×	0		×	×	×	×
SWEET	0	0	0	0	×	×	×	×
GlycoMaps Database	×	×	0	0	×	×	×	×
Glydict	×	×	×	0	×	×	×	×
CAZy	0	×	0	×	×	×	×	×
Glycoconjuate DataBank	0	0	0	×	×	×	×	×
GlycoSuite	0	×	0	×	×	×	×	×
Functional Glycomics	0	0	0	×	×	×	×	×
MD-Simulator	×	0	0	0	0	×	×	×
BioSimGrid	×	×	0	0	0	×	0	×
Glyco-MGrid System	n O	0	0	0	0	0	0	0

 CarbBank http://bssv01.lancs.ac.uk/gig/pages/gag/carbbank.htm
 SugarBase http://www.boc.chem.uu.nl/sugabase/sugabase.html

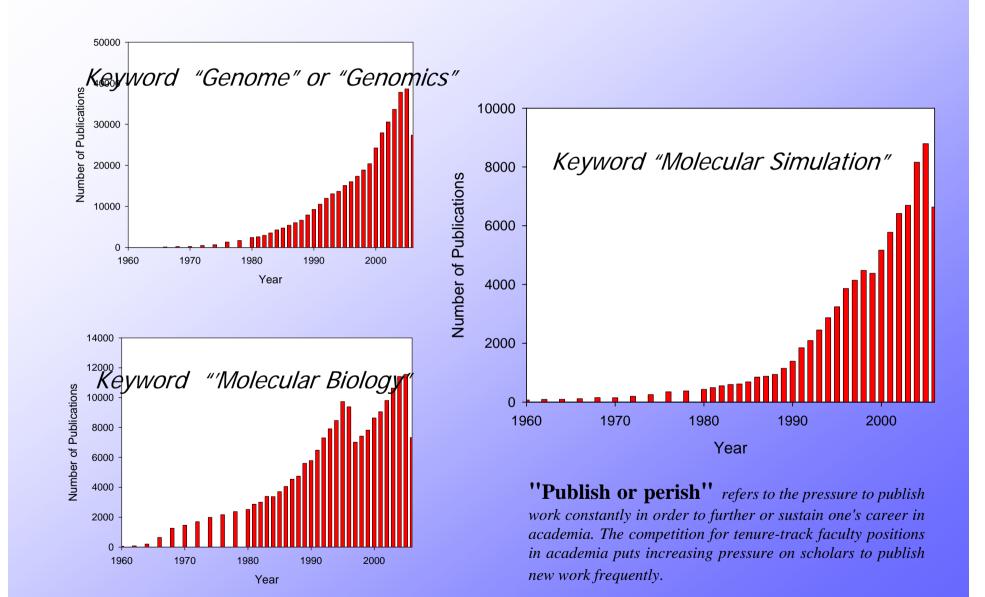
 SWEET http://www.glycosciences.de/modeling/sweet2/doc/index.php
 GlycoMaps http://www.dkfz.de/spec/glycosciences.de/glycomaps/

 MD-Simulator http://www.md-simulations.de/manager/
 Glydict http://www.dkfz.de/spec/glycosciences.de/glycomaps/

 CAZy http://afmb.cnrs-mrs.fr/CAZY/
 Glycoconjugates DB http://akashia.sci.hokudai.ac.jp/


 GlycoSuite https://tmat.proteomesystems.com/glycosuite/
 Functional Glycomics http://www.functionalglycomics.org/static/consortium/

BioSimGrid http://www.biosimgrid.org/


Molecular Simulations & Energy computation

Parameters are derived principally from experimental data, and some calculations. Sources include:

- IR spectra; bond stretching, angle bending, ...
- X-ray crystal structures; geometries and energetics
- solvent simulation to match physical properties (TIP3P)
- ab initio calculations; partial charges
- free energy perturbation with a known experimental result

Publication Increase during the last 45 years - from SciFinder

CHARMM

Chemistry & Chemical Biology

Chemistry at HARvard Macromolecular Mechanics

Supporting Area

- Molecular Mechanics - Molecular Dynamics - Monte Carlo - QM/MM -Free Energy Calculation - Coordinate Analysis

Research

Search CCB

03 OF

Directory Individual Faculty Pages Group Pages Research Areas Publications Affiliated Institutes and Departments

Harvard Department of

nrectory

Martin Karplus

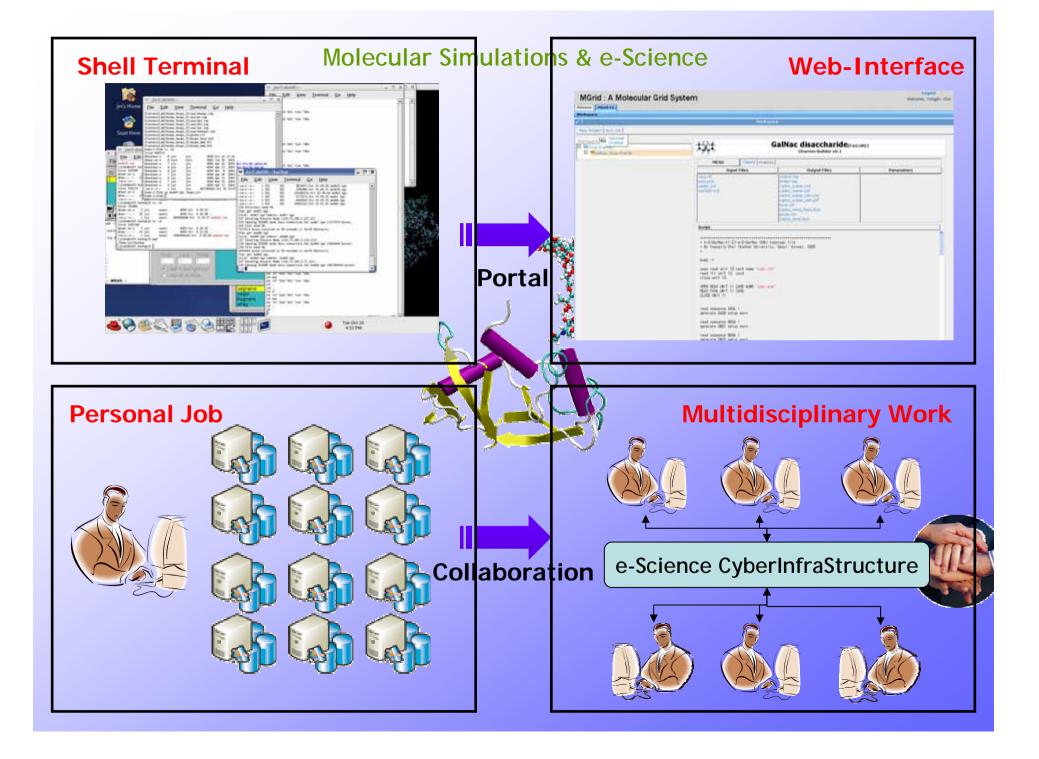
The research of Professor Martin Karplus and his group is directed toward understanding the electronic structure, geometry, and dynamics of moleculies of chemical and biological interest. In each study a problem that needs to be solved is isolated and the methods required are developed and applied. In recent years, techniques of ab intio and semi-empirical quantum mechanics, theoretical and computational statistical mechanics, dassical and quantum dynamics as well as other approaches, including experimental NMR, have been used to obtain the desired solutions.

Solution Dynamics and Thermodynamics. The availability of a deeper understanding of the statistical mechanics of liquids and the development of molecular dynamics and Monte Carlo simulation techniques make it possible to attempt a microscopic (first principles) approach to a variety of problems in the chemistry of solutions. Under study are the conformational equilibria of biopolymers, cage effects in reaction dynamics, and the spectra of molecules in solution.

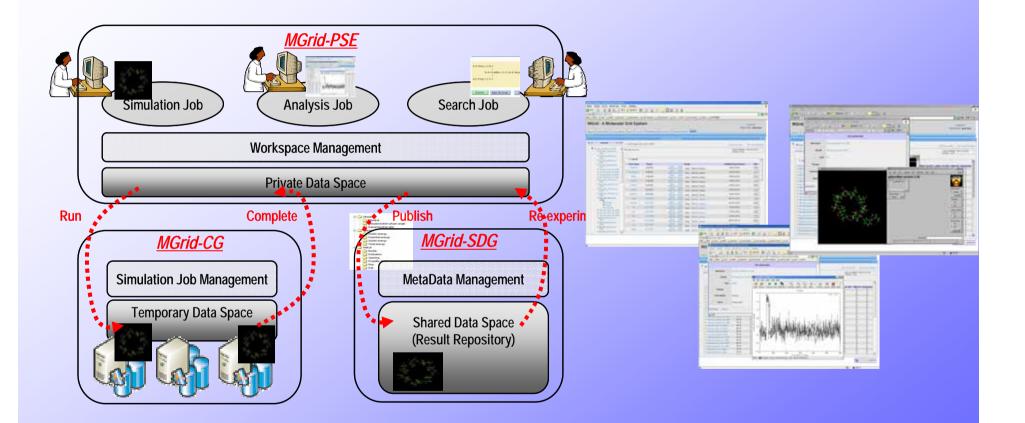
Protein and Nucleic Acids. These biopolymers play an essential role in living systems. The applications of molecular and harmonic dynamics techniques have delineated the time scales and magnitudes of the fluctuations that occur and have indicated their functional importance. Free energy simulations make it possible to determine the effects of mutations on function and stability. Methods are now being developed to treat active sites and to study enzyme relactions at the same level of detail as is available from the theory of gas phase reactions.

Selected Publications

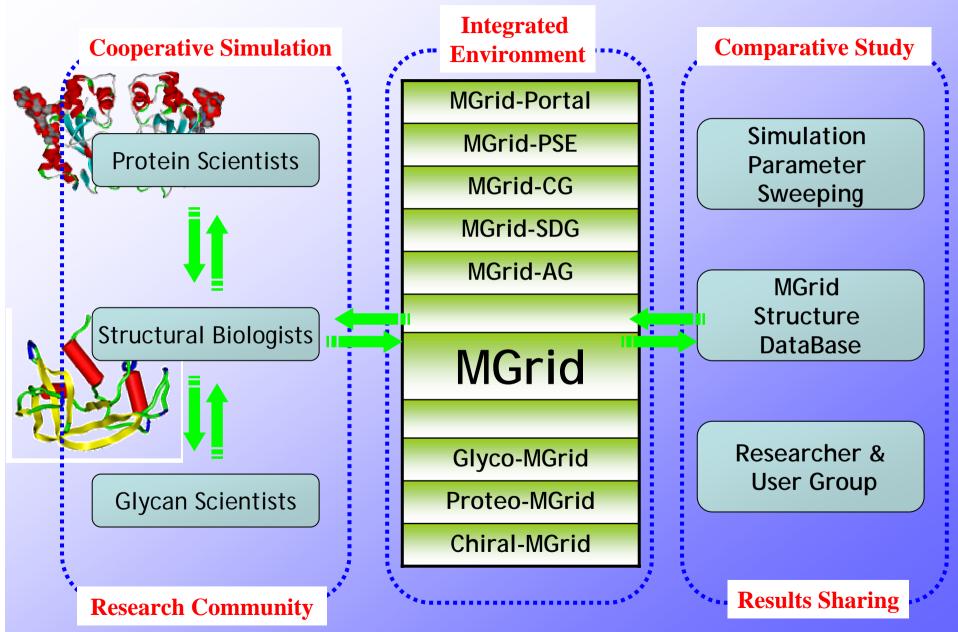
 Aspects of Protein Reaction Dynamics: Deviations from Simple Behavior, J. Phys. Chem. 8 104, 11-27 (2000), by M. Karplus.

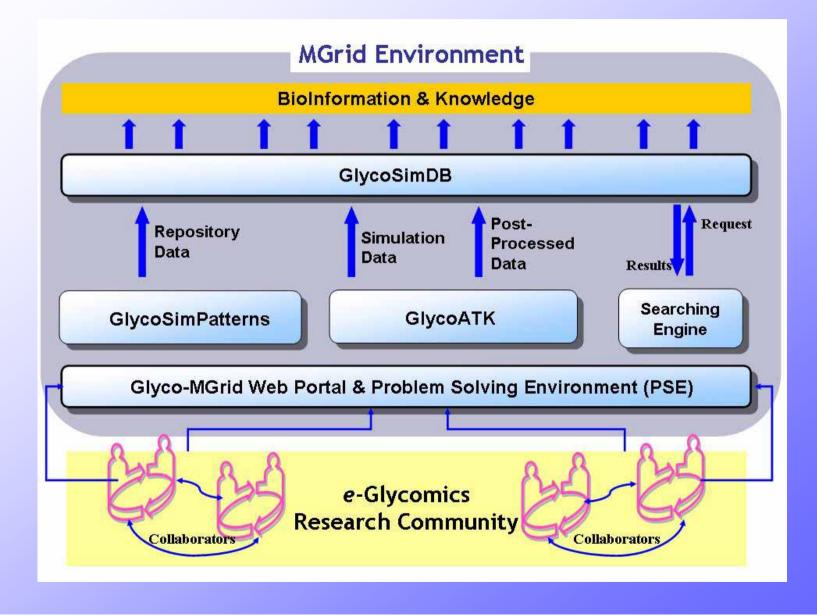

 Understanding Protein Folding via Free-Energy Surfaces from Theory and Experiment, 785 25, 331-339 (2000), by A. R. Dinner, A. Sali, L. J. Smith, C. M. Dobson, and M. Karplus.

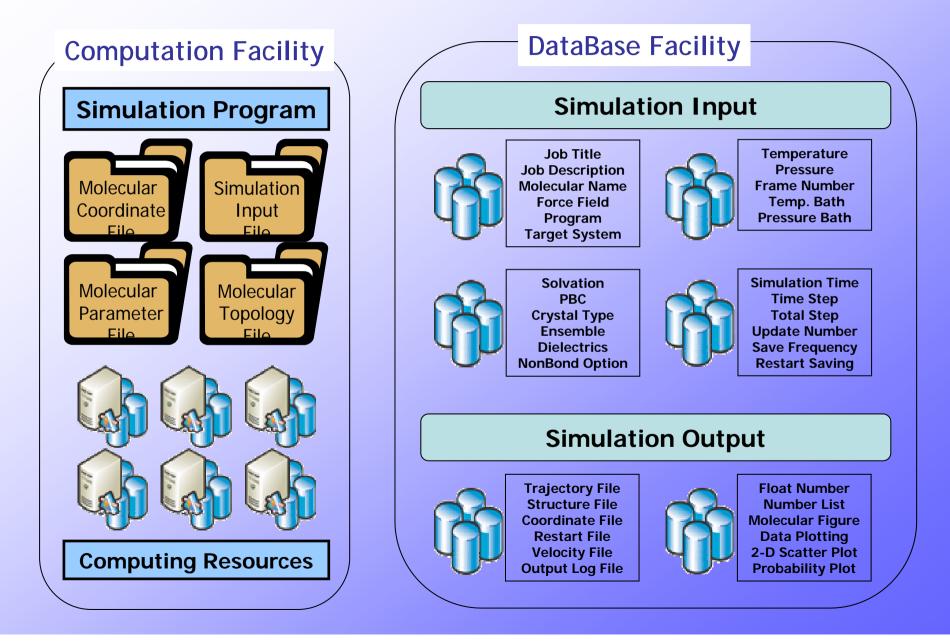
 A Dynamic Model for the Allosteric Mechanism of GroEL, J. Mol. Biol. 302, 303–313 (2000), by J. Ma, P. B. Sigler, Z. Xu and M. Karplus.

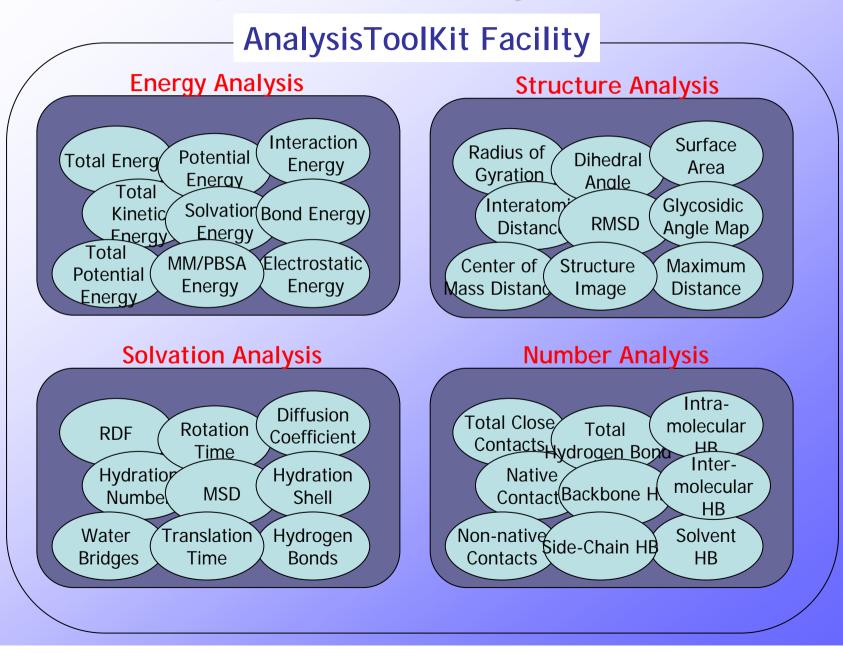

 Triosephosphate Isomerase: A Theoretical Comparison of Alternative Pathways, J. Am. Chem. Soc. 123, 2284-2290 (2001), by Q. Cui and M. Karplus.

UBB	.threads ™				Groupee, Inc.
Log	n Name Password	Login			
You	are not logged in. [Login]	1	Main Index - Search	Active Topics	New user - Who's Online - FAQ - Calendar
	T User Discussion & Questions		Threads	Posts	Last post
0	Setup, I/O, and Basic questions A place for questions regarding the setup of scripts and I/O		783	2899	Pac. Rox size info during N. (rmv) - 10/10/06 05:39 PM
Ŷ	Energy terms, Constraints, Restraints, and Solvati A place to discuss energy function terms and related topics	an	300	1098	(mv) - 10/09/06 05:17 PM
Q	Parameter Set Discussion A place for energy parameters questions and discussions		403	1349	(Dhiraj) - 10/11/06 12:40 AM
0	Molecular Dynamics A place to discuss MD, trajectory analysis, and related method	s	586	2245	(lennart) - 10/10/06 02:23 PM
Q	Minimization, Normal modes, Monte Carlo		149	496	(vinit) - 09/29/06 06:12 PM
Q	OM/MM Discussion and Ouestions A place for QM/MM questions: semi-empendal and ab initio		96	293	Charge changes after Games (Renee) - 10/04/06 12:36 PM
Q	Installation and Performance A place to discuss compilation, execution, and performance iss	ues	253	1090	(Innart) - 10/10/06 11:02 AM
Q	Other User Discussion and Questions A place for miscellaneous CHARMM questions		103	299	(Innart) - 10/02/06 02:00 PM
Ŷ	General Chemistry Discussions Forum to discuss general computational chemistry questions		15	57	- 09/00/06 02:15 AM
	T CHARMM Interfaces		Threads	Posts	Lost post
Q	MMTSB MMTSB CHARMM interface forum		49	155	(meikel) - 10/10/06 08:51 AM
Q	Insight & Quanta Discussion related to using CHARMM with Insight or Quanta		41	103	(saravanaprakash) - 08/18/06 04:55 AM
Ş	GAMESS-UK discussion A place to discuss QM/MM calculations using GAMESS-UK		7	18	(tong) - 04/09/06 02:36 PM
	CHARMM Community		Threads	Posts	Last post
Ģ	CHARMM Neves A place to inform the community about news and publications		15	41	(tim) - 07/11/06 06:45 PM
Q	Bug Reports & Fixes A place to submit or review bug reports and bug fixes		90	236	(B Re: MAXEn in RMSDyn (Shany) - 09/07/06 10:15 AM
Ģ	Script Archive A place to post and download CHARMM scripts		64	319	(mv) - 10/04/06 10:59 AM
Ŷ	Suggestions and Requests A place to suggest new features for CHARMM or this website		14	38	(bluesky) - 03/23/06 12:41 AM
Q.	CHARMM Course Place to discuss the CHARMM Course		21	36	(modified ad hoc replica ex (mv) - 09/28/06 10:59 PM

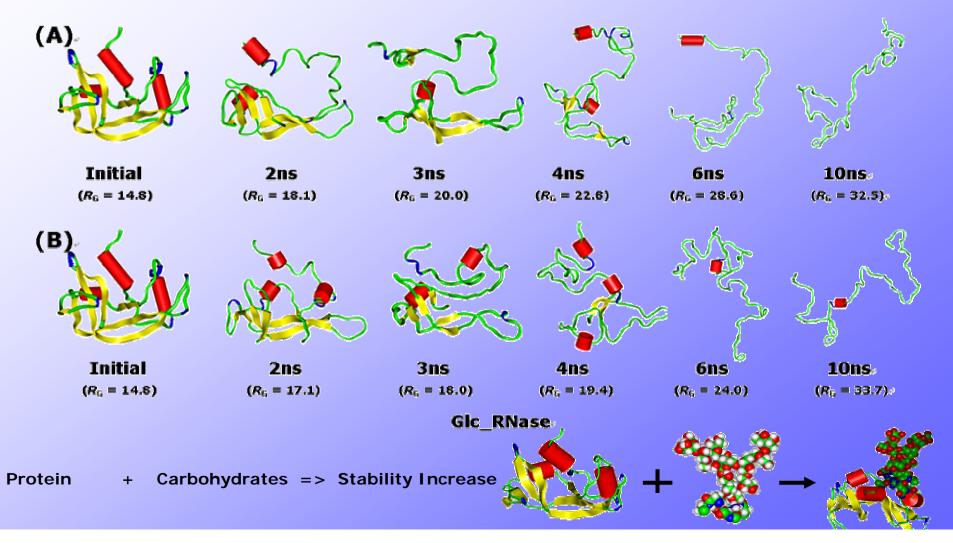

http://www.charmm.org


Architecture of MGrid

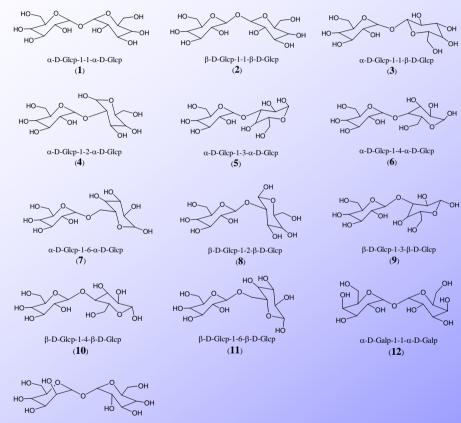

Vision of MGrid


Architecture of Glyco-MGrid

Components of Glyco-MGrid

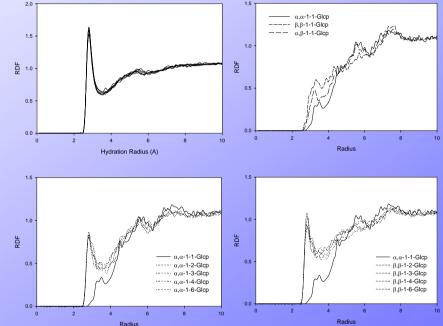


Components of Glyco-MGrid

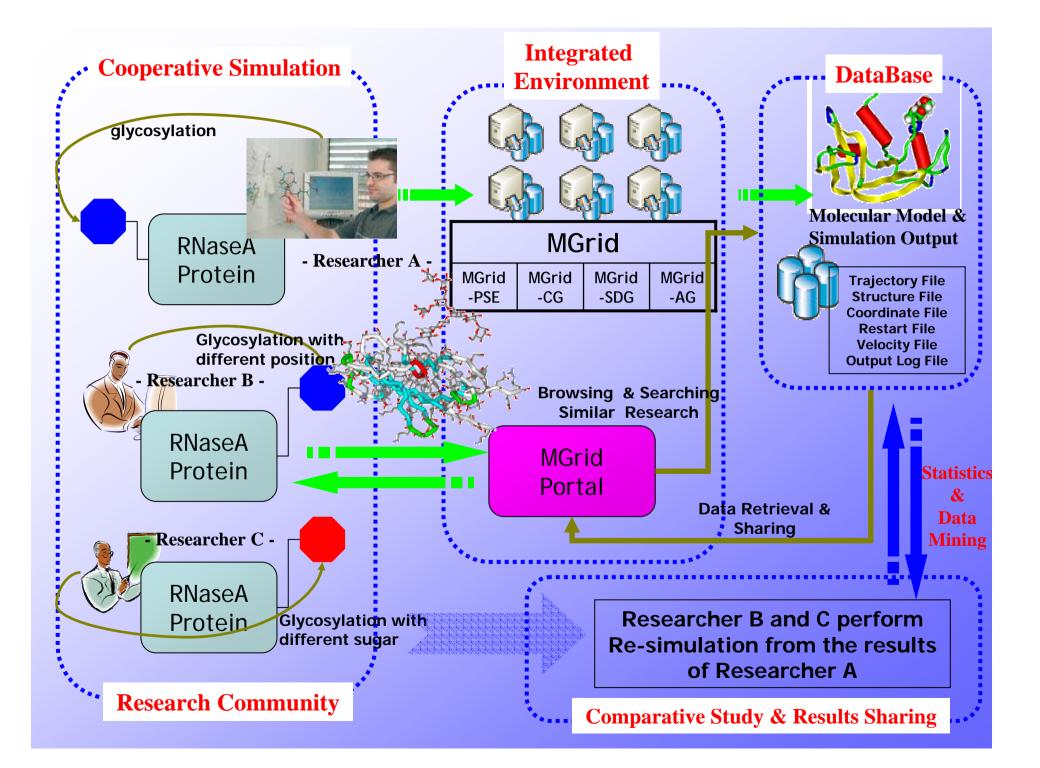


Research Example Thermal Stability of Unglycosylated RNaseA and *N*acetylglycosylated Glc_RNase

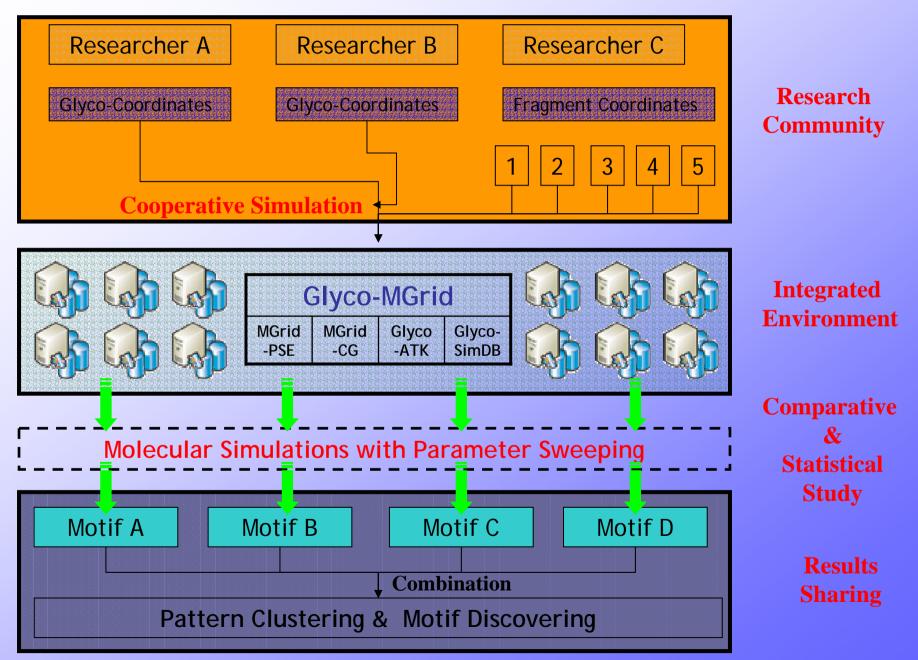
RNaseA



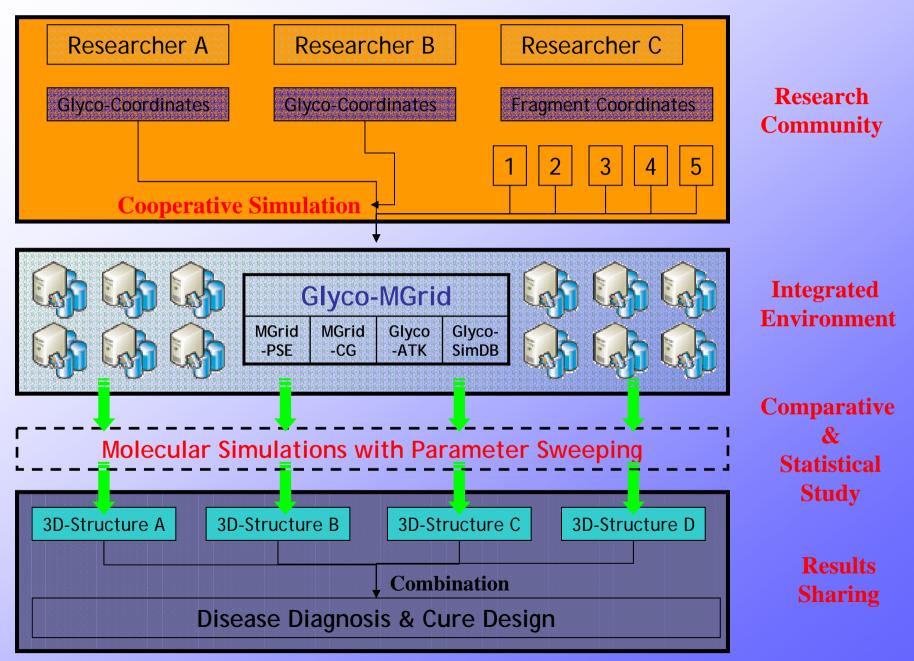
Research Example Conformation and Hydration of the Series of Sugars


 α -D-Manp-1-1- α -D-Manp (13)

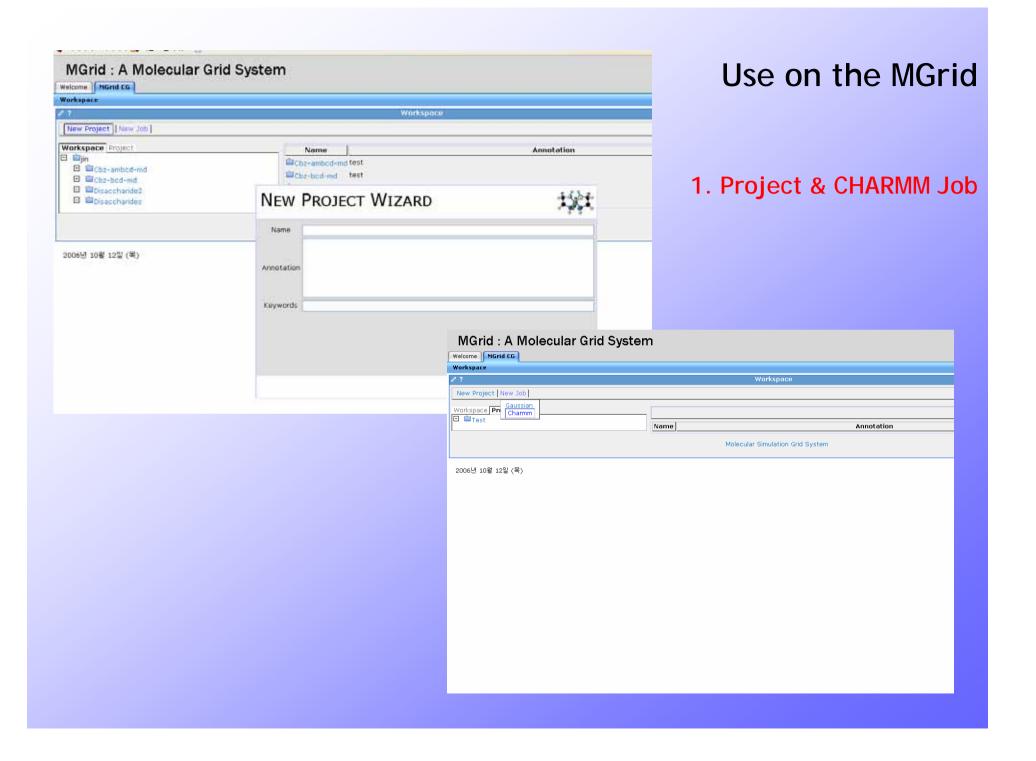
Schematic diagrams of the glycosidic linkage model of the sugars studied in this work.

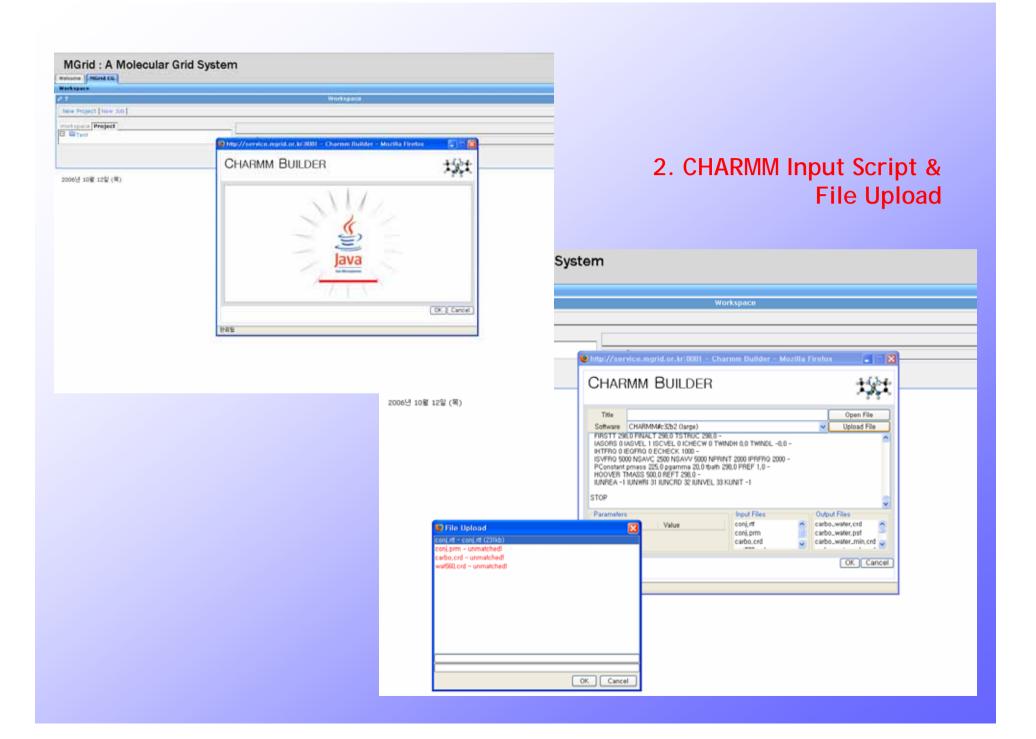


The radial distribution function (RDF) of water molecules around disaccharides. (A) RDF around all oxygen atoms of each disaccharides (B) RDF around glycosidic oxygen of **1**, **2**, and **3** (C) RDF around glycosidic oxygen of **1**, **4**, **5**, **6**, and **7** (D) RDF around glycosidic oxygen of **1**, **8**, **9**, **10**, and **11**. The RDF of water around whole trehalose is not dissimilar to other sugars. But, the RDF of water around glycosidic oxygen of trehalose is quite dissimilar to other linkage typed disaccharides. Only 1,1-linked trehalose showed anisotropic water distribution among the other 1,2-, 1,3-, 1,4- or 1,6-linked sugars.


Youngjin Choi; Kum Won Cho; Karpjoo Jeong; Seunho Jung. Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell. Carbohydrate Research (2006) vol 341. 1020–1028

Glyco-Structure Motif Searching Project Scenario




Disease-Related Glycan Modeling Project Scenario

Current-Status of Glyco-MGrid Project

Glyco- Research compounds Project		Job Details	Analyses
Chucan	Branching	Branching effect on the glycan conformation	to by
Glycan	Glycan Core	Calculation of biological core glycan structure	
Sugar compounds	Glycosidic Linkage	Glycosidic angle map of each glycosidic linkage	boundary bou
Doly soosbarida	Microbial Carbohydrates	MC and MD conformational searching of bacterial carbohydrates	
Poly-saccharide	Cyclic Carbohydrates	Conformational characteristics of cyclic carbohydrates	
	Unfolding	Unfolding simulations for the stability and conformations of glycosylated proteins	and the second
Glycoprotein	Folding	Folding simulations for the conformational effects of glycosylation	
	Function	MD simulations for the biological function of glycoproteins	

MGrid : A Molecular	Grid System			
New Project New 3cb				
workspace Project				
B Wrest	😧 http://nervice.myrkt.or.kr/4031 — Now Folder – Mo	ozilla Firefox 📰 🕄 🔀	3. CHARMM	I Job Running
	CHARMM BUILDER	均过 ——		
2006년 10월 12일 (북)	Successfully job submitted. Click 'Close' and then reloading your project tree	and list.	ipace in	Logout Welcome, Youngin, Choi
		Citore	Test MD Charmm Builder v0.1	
	94 5		Output Files	Parameters
		WELSON, LTO	stdout.log stderr.log carbo_water.psf carbo_water.psf carbo_water_min.crd carbo_water_min.psf heat.rst carbo_wmd_heat.dcd produ.rst carbo_wmd.dcd	
		+ b-D-GalNac-(1-2)-a-D-Ga	k University, Seoul, Korea), 2005 me "conj.rtt"	

🌮 파이어폭스 시작하기 🔂 최신 모질라 뉴스 📄 Firefox Start

* B-D- * BY Y * DAT	GALNAC-(1-2)-A- OUNGJIN CHOI (k	-D-GALNAC C	ONJ TOPOLO ERSITY, SE	GY FILE OUL, KOREA), 2005 EATED BY USER: kgr	
* 1650 1 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 9 20 21 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 23 33 34 35 35 35 35 35 37 38 39 4	1 BDGA C1 1 BDGA H1 1 BDGA O1 1 BDGA O1 1 BDGA O1 1 BDGA O1 1 BDGA C2 1 BDGA C2 1 BDGA C3 1 BDGA C3 1 BDGA H3 1 BDGA H4 1 BDGA H4 1 BDGA H61 1 BDGA H61 1 BDGA H62 1 BDGA H4 1 BDGA H4 1 BDGA H4 1 BDGA H1 1 B	-1.90618 -1.78201 -0.61511 -3.73286 -2.85895 -4.285895 -4.285895 -4.285895 -4.285895 -4.2870 -5.09247 -5.58328 -4.74113 -5.68715 -4.98812 -5.30524 -4.18738 -3.39991 -5.37554 -5.75734 -2.54297 -0.94220 -2.34657 -2.39833 -2.26073 -2.39833 3.92417 3.87497 4.69734 5.13199 1.71910 1.67792 2.63862 4.46064 3.63411 -2.5111 -2.5111 -2.5111 -2.5111 -2.53387 -1.95845 -1.95845 -2.54845 -2.5497 -2.39833 -2.26073 -2.3289 -1.95845 -2.5497 -2.39833 -2.26073 -2.3289 -1.95845 -2.56362 -2.56362 -2.55387 -2.63862 -2.5387 -2.46064 -2.5511 -2.5511 -2.5511 -2.55387 -2.46064 -2.55111 -2.55111	-0.33720 -0.65803 -0.24352 1.04997 0.65288 0.98506 -1.28416 -0.87748 -1.23903 -1.69411 -1.97927 -2.64647 0.18909 0.16295 0.73973 0.00689 2.49354 3.10984 2.91730 2.52950 3.44042 -4.95353 -5.75209 -5.09458 -5.037711 -3.62965 -3.41044 -2.64058 -2.87291 -1.69932 -1.69932 -1.69932 -2.463711 -0.85572 -0.97075 -2.463711 -0.85572 -0.97075 -1.846433 -0.36287 -0.34287 -0.34287 -0.34287	-0.11626 CARB 1 -1.16850 CARB 1 -0.75066 CARB 1 -0.75066 CARB 1 -0.72015 CARB 1 0.67253 CARB 1 1.69600 CARB 1 1.69600 CARB 1 0.13570 CARB 1 0.13570 CARB 1 1.01161 CARB 1 0.47983 CARB 1 1.01161 CARB 1 0.47983 CARB 1 1.29894 CARB 1 1.29894 CARB 1 1.29894 CARB 1 1.29894 CARB 1 1.31296 CARB 1 1.31296 CARB 1 0.15555 CARB 1 -1.65570 CARB 1 0.15555 CARB 1 -1.65570 CARB 1 0.42375 CARB 1 0.42375 CARB 1 1.48522 CARB 1 0.36310 CARB 1 1.48522 CARB 1 0.36310 CARB 1 1.48522 CARB 1 0.36310 CARB 1 0.36310 CARB 1 1.4852 CARB 1 0.77200 CARB 1 1.67429 CARB 1 0.77200 CARB 1 0.77200 CARB 1 0.77200 CARB 1 0.77200 CARB 1 0.77200 CARB 1 0.77200 CARB 2 0.11356 CARB 2 0.11356 CARB 2 0.13637 CARB 2 0.06137 CARB 2 0.06137 CARB 2 0.16653 CARB 2 0.06137 CARB 2 0.3637 CARB	0.00000 0.00000
40 41 42 <u>43</u> 91751	2 BDGA H3 2 BDGA 03 2 BDGA H03 2 BDGA C4	3.65111 4.11039 3.48782 2.20157	0.74571 2.02698 2.71654 0.54431	0.16645 CARB 2 0.49083 CARB 2 0.15196 CARB 2	0.00000 0.00000 0.00000

4. Job Monitoring

🌮 파이어폭스 시작하기 🔂 최신 모질라 뉴스 🗋 Firefox Start

Chemistry at HARvard Macromolecular Mechanics (CHARMM) - Developmental Version 32b2 February 15, 2006 Copyright(c) 1984-2001 President and Fellows of Harvard College All Rights Reserved Current operating system: Linux-2.6.9-1.667smp(i686)@node11.konkuk.ac. Created on 10/11/ 6 at 9:13:36 by user: kgrid001 Maximum number of ATOMS: 60120, and RESidues: 15030 Current HEAP size: 10240000, and STACK size: 2000000 RDTITL> * B-D-GALNAC-(1-2)-A-D-GALNAC CONJ TOPOLOGY FILE RDTITL> * BY YOUNGJIN CHOI (KONKUK UNIVERSITY, SEOUL, KOREA), 2005 RDTITL> * CHARMM> CHARMM> bomb -1 CHARMM> CHARMM> open read unit 10 card name "conj.rtf" VOPEN> Attempting to open∷conj.rtf:: OPNLGU> Unit 10 opened for READONLY access to conj.rtf CHARMM> read rtf unit 10 card MAINIO> Residue topology file being read from unit 10. TITLE> *>>>>> COMBINED CHARMM ALL-HYDROGEN TOPOLOGY FILE FOR <<<<< TITLE> *FROM TITLE> *>>>>>CHARMM22 ALL-HYDROGEN TOPOLOGY FILE FOR PROTEINS <<<<< TITLE> *>>>>>> DIRECT COMMENTS TO ALEXANDER D. MACKERELL JR. <<<< TITLE> *>>>>> 410-706-7442 OR EMAIL: ALEX, MMIRIS.AB.UMD.EDU <<<< TITLE> * AND TITLE> * ALEXANDER D. MACKERELL JR. TITLE> * AUGUST 1999 TITLE> * ALL COMMENTS TO ADM JR. EMAIL: ALEX, MMIRIS.AB.UMD.EDU TITLE> * TELEPHONE: 410-706-7442 TITLE> * **** WARNING from RTFRDR **** The total charge of the residue, BETA, 0.2000000, does not equal the expected charge, 0.0000000. PRES C2 0.0 There were 1 warning(s) from RTFRDR. CHARMM> close unit 10

A5 -6907.18 -6907.18 -6901.48 -69053 -6878.01 -6876.4.96 -6854.13	삼업(1) 서식(12) 도구(1) 데이터(12) (2) ★ 4 ← 3 ← 3 ← 7 ← 7 ← 7 ← 7 ← 7 ← 7 ← 7 ← 7	5.	Post-Processing	g of the Trajector
-6840.67				Logout
-6826.52	MGrid : A Molecular Grid S	ystem		Welcome, Youngjin, Choi
-6813,09	Welcome MGrid CG			
-6801,75	Workspace			
-6783,82	12	w	orkspace	6
-6757.72	New Project New Job			
-6744.86	new Project New 300			
-6724,59	Workspace Project	1630	Test MD	
-6709.73	E Test		Test MD[SUCCESS]	
-6692,56	Test MD		Charmm Builder v0.1	
-6690,46		MENU Delete 1	4D Analysis	
-6666.63		· · · · ·		December 1
-6646,7		Input Files	Output Files	Parameters
-6642,99		conj.rtf conj.prm	stdout.log stderr.log	
-6626,47	😻 (TPE.png 그림, PNGx960 폭벨) - 크기 (478	6) - Mozilla Firefox 📰 🗖 🔀	carbo_water.crd	
-6601,98	파일(F) 편집(E) 보기(V) 바로가기(G) 복마:		carbo_water.psf carbo_water_min.crd	
-6592,2			carbo_water_min.psf	
-6579,92	🧼 - 🛶 - 🎒 🔞 🏠 🗋 http://service.m	grit 🗹 🗿 😫 71 🛛 👥 🚬	heat.rst	
-6580,14	파미어폭스 시작하기 🔝 최신 모질라 뉴스 📑 Firefi	ox Start	carbo_wmd_heat.dcd produ.rst	
-6570,05			carbo_wmd.dcd	
-6566,19		.csv	TKE.csv TPE.csv	Temperature.csv
-6540.09	Name La	- Really Munday	TKE.png TPE.png	Temperature.png
-6516,43	5			TPE.png
	^م ير ده		Ē.	Total Potential Energy
			CONJ topology file	
-6514,68 -6495,81			versity, Seoul, Korea), 2005 §	
-6514,68 -6495,81 -6471,82			7	
-6514,68 -6495,81 -6471,82 -6465,12			9	
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11			versity, Seoul, Korea), 2005	
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78	E /			0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99	E	same "c	onj.rtf"	
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19	Ē	same "C		0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03				0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03 -6382,15			anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03 -6382,15 -6364,19			anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03 -6382,15 -6364,19 -6338,03			anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6465,12 -6465,12 -6465,12 -6465,12 -6465,12 -6465,12 -6465,12 -6423,99 -6423,99 -6409,19 -6387,03 -6382,15 -6382,15 -6364,19 -6338,03 -6311,68	-/		anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6465,12 -6465,12 -6488,78 -6423,99 -6409,19 -6387,03 -6382,15 -6382,15 -6364,19 -6338,03 -6311,68 -6298,65		AME "C	anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03 -6382,15 -6364,19 -6338,03 -6311,68 -6298,65 -6293,32			anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03 -6382,15 -6364,19 -6338,03 -6311,68 -6298,65 -6293,32 -6281,81		read sequence EDGA 1 generate GND1 setup warn	anj.rtf"	0 5808580850085800
-6514,68 -6495,81 -6471,82 -6465,12 -6446,11 -6438,78 -6423,99 -6409,19 -6387,03 -6382,15 -6364,19 -6338,03 -6311,68 -6298,65 -6293,32		read sequence EDGA 1	anj.rtf"	0 5808580850085800